Asymmetric Intramolecular C−**H Insertions of Aryldiazoacetates**

Huw M. L. Davies,* Mônica V. A. Grazini,[†] and Emmanuel Aouad

Department of Chemistry, University at Buffalo, The State University of New York, Bufalo, New York 14260-3000

*hda*V*ies@acsu.buffalo.edu*

Received March 2, 2001

 \sim \sim \sim

ABSTRACT

ORGANIC

The enantioselectivity of Rh2(*S***-DOSP)4 catalyzed C**−**H insertion of aryldiazoacetates is very dependent on the site of the C**−**H insertion. The highest enantioselectivity is obtained for insertion into methine C**−**H bonds.**

Recently, it has been shown that the intermolecular $C-H$ insertion of aryldiazoacetates is a very effective method for asymmetric C $-H$ activation.^{1,2} For example, the reaction of methyl phenyldiazoacetate (**2**) with N-BOC pyrrolidine, catalyzed by $Rh_2(S\text{-DOSP})_4$ (1a), generates the C-H insertion product 3 in 92% de and 94% ee (eq 1).^{1d} Excellent regio-, diastereo-, and enantiocontrol are possible in this chemistry.

$$
\left[\begin{matrix} \mathbb{O}^{1\text{Rh}} \\ \mathbb{N} & \mathbb{O}^{1\text{Rh}} \\ \mathsf{so}_{2^{\text{Ar}}} & \mathsf{1}_4\end{matrix}\right]
$$

1a: Ar =
$$
p-C_{12}H_{25}C_6H_4
$$
 Rh₂(S-DOSP)₄
1b: Ar = $p^{-1}BUC_6H_4$ Rh₂(S-TBSP)₄

BOC
\n
$$
h_{2} = \frac{CO_{2}Me}{Ph} = \frac{Rh_{2}(S\text{-DOSP})_{4}}{50 \text{ °C, then TFA}} = \frac{H}{H} = \frac{CO_{2}Me}{Ph}
$$
\n
$$
72\% \text{ yield, } 92\% \text{ de, } 94\% \text{ ee}
$$

Considering the efficiency of rhodium prolinate catalyzed intermolecular C-H insertions of aryldiazoacetates, we were intrigued with the very low enantioselectivity that Sulikowski reported³ for $Rh_2(S-TBSP)_4$ (1b) catalyzed intramolecular ^C-H insertion of aryldiazoacetate **⁴** to form the C-^H insertion products **5a**-**^d** that were ultimately converted to the fused indole **6** (Scheme 1). $Rh_2(S-TBSP)_4$ (1b) usually performs very well as a chiral catalyst when aryldiazoacetates are used as substrates,⁴ but the results in Scheme 1 are far inferior to the intermolecular example shown in eq 1. Prompted by the apparent dichotomy between the inter- and intramolecular C-H insertions of aryl diazoacetates,⁵ we decided to carry out a systematic study on intramolecular

[‡] Visiting professor from Centro de Ciências Exatas e de Tecnologia da Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil 0870-911.

^{(1) (}a) Davies, H. M. L.; Hansen, T. *J. Am. Chem. Soc.* **1997**, *119*, 9075. (b) Davies, H. M. L.; Stafford, D. G.; Hansen, T. *Org. Lett*. **1999**, *1*, 233. (c) Davies, H. M. L.; Antoulinakis, E. G.; Hansen, T. *Org. Lett*. **1999**, *1*, 383. (d) Davies, H. M. L.; Hansen, T.; Hopper, D.; Panaro, S. A. *J. Am. Chem. Soc.* **1999**, *121*, 6509. (e) Axten, J. M.; Ivy, R.; Krim, L.; Winkler, J. D. *J. Am. Chem. Soc.* **1999**, *121*, 6511. (f) Davies, H. M. L.; Stafford, D. G.; Hansen, T.; Churchill, M. R.; Keil, K. M. *Tetrahedron Lett*. **2000**, *41*, 2035. (g) Muller, P.; Tohill, S. *Tetrahedron* **2000**, *56*, 1725. (h) Davies, H. M. L.; Hansen, T.; Churchill, M. R. *J. Am. Chem. Soc*. **2000**, *122*, 3063. (i) Davies, H. M. L.; Antoulinakis, E. G. *Org. Lett.* **2000**, 2, 4153. (j) Davies, H. M. L.; Ren, P. *J. Am. Chem. Soc.* **2001**, in press.

⁽²⁾ For a general review, see: Davies, H. M. L.; Antoulinakis, E. G. *J. Organomet. Chem*. **²⁰⁰¹**, *⁶¹⁷*-*618*, 45.

⁽³⁾ Lim, H.-J.; Sulikowski, G. A. *J. Org. Chem.* **1995**, *60*, 2326.

^{(4) (}a) Davies, H. M. L. *Eur. J. Org. Chem*. **1999**, 2459. (b) Davies, H. M. L. *Aldrichimica Acta* **1997**, *30*, 105.

⁽⁵⁾ Dirhodium tertaprolinates have been successfully used for intermolecular C-H insertions of other classes of diazoacetates; see: (a) Ye, T.; García, C. F.; McKervey, M. A. *J. Chem. Soc., Perkin Trans. 1* **1995**, 1373. (b) García, C. F.; McKervey, M. A.; Ye, T. *Chem. Commun.* **1996**, 1465.

^C-H insertions in order to reconcile the differences between the two modes of reaction.

A complicating feature associated with Sulikowski's system is that four diastereomeric products, **5a**-**d**, are formed in the C-H insertion step. These compounds were not individually analyzed. Instead, pairs of diastereomers were oxidized to the indole **6**. Thus, the overall enantioselectivity that was reported is not directly related to the carbenoid face selectivity during the reaction. Furthermore, the reaction conditions that were used $(CH_2Cl_2,$ reflux) are far from the ideal conditions established for asymmetric catalysis by rhodium prolinates (hydrocarbon solvent, temperatures as low as -78 °C).⁶ Consequently, we decided to study the intramolecular C-H insertions of aryldiazoacetates by using a simpler system, **7** (eq 2). This system

would enable the differences in asymmetric induction between inter- and intramolecular C-H insertions of aryldiazoacetates to be determined. The results of these studies using $Rh_2(S\text{-DOSP})_4$ (1a) and the second generation bridged prolinate catalysts $Rh_2(S-biTISP)_2$ (8)⁷ and 9⁸ are described in this paper.

Our intermolecular studies have established that the carbenoid from aryldiazoacetates displays subtle chemoselectivity for insertion at secondary or tertiary sites. Electronically, attack at a tertiary site is preferred, but this is balanced by steric factors that favor attack at a secondary site. On the basis of this reactivity pattern, the intramolecular substrates **7** that were used were chosen to explore the effect of substitution at the C-H insertion site on the outcome of the reaction. The aryldiazoacetates were readily prepared by a diazotransfer reaction using *p*-acetamidobenzenesulfonyl azide (*p*-ABSA) and DBU as base (eq 3).9

The first system that was examined, **7a**, would only be able to undergo a C-H insertion into a methyl group (Scheme 2). So far, no effective C-H insertion into a methyl

group has been reported for the intermolecular reactions. Rh₂- $(S-DOSP)₄$ catalyzed decomposition of **7a** at -50 °C failed

⁽⁶⁾ Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. *J. Am. Chem. Soc.* **1996**, *118*, 6897.

to generate any C-H insertion product. Carbene dimer was the major product. In contrast, repeating the reaction at room temperature resulted in a 98% yield of C-H insertion product **10a**. The enantioselectivity, however, for the formation of **10a** was very low (<5% ee). As a result of the rigid nature of the bridged catalysts 8 and 9 , CH_2Cl_2 can be used as solvent with these catalysts without a detrimental effect on asymmetric induction.^{7,8} Decomposition of **7a** at -50 °C with either **8** or **9** generated **10a** in 43% and 68% ee, respectively.

The next substrates that were examined, **7b** and **7c**, would be expected to undergo C-H insertion into a methylene group. $Rh_2(S\text{-DOSP})_4$ (1a) catalyzed decomposition of **7b** at -50 °C resulted in the formation of the dihydrobenzofurans **11b** and **12b** in 85% yield as a 4:1 mixture of cis and trans isomers (Scheme 3).¹⁰ Furthermore, the major cis

isomer was formed in 60% ee. An even more highly diastereoselective reaction occurred with **7c**, in which the size of the methylene substituent was increased from methyl to cyclohexyl. The *cis*-dihydrobenzofuran **11c** was formed in 95% de and 63% ee. The reaction of **7b** with the bridged prolinate catalysts **8** and **9** occurred with enantioselectivity similar but opposite to that of the reaction catalyzed by $Rh₂(S-DOSP)₄$. Opposite asymmetric induction between Rh2(*S*-DOSP)4 and the bridged prolinate catalysts has been observed previously in cyclopropanation reactions.7,8 The reaction of **7c** catalyzed by either **8** and **9** was considerably less diastereoselective and enantioselective than the reaction catalyzed by $Rh_2(S\text{-DOSP})_4$.

The final substrates, **7d**-**f**, would be expected to undergo insertion into a methine position. Rh₂(*S*-DOSP)₄ (1a) catalyzed decomposition of the isopropyl derivative $7d$ at -50 °C resulted in a very efficient transformation (Scheme 4).

The C-H insertion product **13d** was formed in 98% yield and 94% ee. The reaction of **7d** catalyzed by either **8** and **9** was considerably less enantioselective than the reaction catalyzed by Rh₂(*S*-DOSP)₄. The Rh₂(*S*-DOSP)₄ catalyzed reaction with the cyclopentyl derivative **7e** generated the ^C-H insertion product **13e** in 93% yield and 90% ee. Reaction of the cyclohexyl derivative **13f**, however, resulted in a very low yield of the C-H insertion product. Carbene dimer formation predominates in this case. This may be an indication that an axial C-H bond in cyclohexane does not react well in these C-H insertions of carebenoids derived from aryldiazoacetates.

These studies demonstrate that effective asymmetric intramolecular C-H insertion is possible with aryldiazoacetate derivatives but the extent of asymmetric induction is very dependent on the site of C-H insertion and the catalyst. With the bridged prolinate catalysts, **8** and **9**, the highest enantioselectivity is obtained for insertion into a methyl group. The highest enantioselectivity using Rh₂(*S*-DOSP)₄ is obtained for insertion into methine C-H bonds. This trend is different from that observed in the intermolecular C-H insertions, where reasonably high enantioselectivity generally occurs for insertion into methylene C-H bonds.²

Acknowledgment. Financial support of this work by the National Science Foundation (CHE-0092490) is gratefully acknowledged. We also thank the State of São Paulo Research Foundation for a postdoctoral fellowship to M.V.A.G. We thank Dr. Tadamichi Nagashima and Stephen A. Panaro for the preparation of catalysts **8** and **9**.

Supporting Information Available: Experimental conditions and spectral data for **⁷** and **¹⁰**-**13**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0157858

⁽⁷⁾ Davies, H. M. L.; Panaro, S. A. *Tetrahedron Lett*. **1999**, *40*, 5287.

⁽⁸⁾ Davies, H. M. L.; Kong, N. *Tetrahedron Lett*. **1997**, *40*, 4203.

⁽⁹⁾ Davies, H. M. L.; Cantrell, W. R.; Romines, K. R.; Baum, J. S. *Org. Synth.* **1991**, *70*, 93.

⁽¹⁰⁾ The absolute stereochemistry for the C-H insertions products has not been unamabiguously determined, but the configuration that is drawn is that expected from the predictive model for $Rh_2(S\text{-DOSP})_4$ catalyzed $C-H$ insertions (see ref 2).